חAmIBIA UחIVERSITY

OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES
 DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 6
COURSE CODE: PBT602S	COURSE NAME: Probability Theory 2
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr D. B. GEMECHU
MODERATOR:	Prof R. KUMAR

INSTRUCTIONS

1. There are 5 questions, answer ALL the questions by showing all the necessary steps.
2. Write clearly and neatly.
3. Number the answers clearly.
4. Round your answers to at least four decimal places, if applicable.

PERMISSIBLE MATERIALS

1. Nonprogrammable scientific calculators with no cover.

Question 1 [12 marks]

1.1. Define the following terms:
1.1.1. \quad Power set, $\mathcal{P}(S)$
1.1.2. Sigma algebra, $\sigma(S)$
1.1.3. Boolean algebra, $\mathfrak{B}(S)$
1.2. Consider an experiment of rolling a die with four faces once.
1.2.1. Find the power set of the sample space S for this experiment, where S represents the sample space for a random experiment of rolling a die with six faces.
1.2.2. Show that the set $\sigma(X)=\{\phi, S,\{2,3\},\{1,4\}\}$ is a sigma algebra.

Question 2 [27 marks]

2.1. Let X be a continuous random variable with p.d.f. given by

$$
f_{X}(x)=\left\{\begin{array}{lc}
x & \text { if } 0<x<1 \\
2-x & \text { if } 1 \leq x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then find cumulative density function of X
2.2. The cumulative distribution function (c.d.f.) of a random variable X is given by

$$
F_{X}(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{x}{4} & \text { for } 0 \leq x<4 \\ 1 & \text { for } x \geq 4\end{cases}
$$

Then use the c.d.f. of X to find
2.2.1. $P(2<X \leq 3)$
2.2.2. $P(X \geq 1.5)$
2.2.3. the $25^{\text {th }}$ percentile value of X.
2.3. Consider the following joint p.d.f. of X and Y.

$$
\begin{equation*}
f(x, y)=3(x+y) I_{(0,1)}(x+y) I_{(0,1)}(x) I_{(0,1)}(y) \tag{4}
\end{equation*}
$$

Find the marginal p.d.f. of Y.
2.4. Let X and Y be a jointly distributed continuous random variable with joint p.d.f. of

$$
f_{X Y}(x, y)=\left\{\begin{array}{cl}
1.2\left(x+y^{2}\right) & \text { for } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \tag{2}\\
0 & \text { otherwise }
\end{array}\right.
$$

2.4.1. Show that marginal pdf of $X, f_{X}(x)=\frac{6}{5}\left(x+\frac{1}{3}\right) I_{(0,1)}(x)$.
2.4.2. Find the conditional distribution of Y given $X=\frac{1}{4}$.
2.4.3. Find $P(Y \geq 0.15 \mid X=0.25)$.
2.4.4. Find the conditional mean Y given $X=\frac{1}{4}$.

Question 3 [24 marks]

3.1. Let X and Y be two random variables and let a, b, c and k be any constant numbers. Then $\operatorname{Cov}(a X+c, b Y+k)=a b \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.
3.2. Let Y_{1}, Y_{2}, and Y_{3} be three random variables with $E\left(Y_{1}\right)=5, E\left(Y_{2}\right)=12, E\left(Y_{3}\right)=4, \sigma_{Y_{1}}^{2}=2$, $\sigma_{Y_{2}}^{2}=3, \sigma_{Y_{3}}^{2}=1, \sigma_{Y_{1} Y_{2}}=-0.6, \sigma_{Y_{1} Y_{3}}=0.3$, and $\sigma_{Y_{2} Y_{3}}=2$. If $R=2 Y_{1}-3 Y_{2}+Y_{3}$, then find
3.2.1. the expected value of R.
3.2.2. the correlation coefficient between Y_{1} and Y_{3} and comment on your result.
3.2.3. the variance of R.
3.3. The joint probability density function of the random variables X, Y, and Z is

$$
f(x, y, z)=\left\{\begin{array}{cl}
\frac{4}{9} x y z^{2}, & 0<x<1 ; 0<y<1 ; 0<z<3 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the joint marginal density function of Y and Z. Hint: find $f_{Y Z}(y, z)$.
3.4. If X_{1}, X_{2}, and X_{3} are DISCRETE random variables with joint p.m.f. $f\left(x_{1}, x_{2}, x_{3}\right)$, then for any constants c_{1}, c_{2} and c_{3}, show that $E\left(\sum_{i=1}^{3} c_{i} X_{i}\right)=\sum_{i=1}^{3} c_{i} E\left(X_{i}\right)$.

QUESTION 4 [17 marks]

4.1. Suppose that X is a random variable having a binomial distribution with the parameters n and p (i.e., $X \sim \operatorname{Bin}(n, p)$).
4.1.1. Show that the moment generating function of X is given by $M_{X}(t)=\left(1-p\left(1-e^{t}\right)\right)^{n}$.

$$
\begin{equation*}
\text { Hint: }(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} . \tag{4}
\end{equation*}
$$

4.1.2. Find the cumulant generating function of X and hence find the first cumulant.
4.2. Let the random variables $X_{k} \sim \operatorname{Poisson}\left(\lambda_{k}\right)$ for $k=1, \ldots, n$ be independent Poisson random variables. If we define another random variable $Y=X_{1}+X_{2}+\cdots+X_{n}$, then find the characteristics function of $Y, \phi_{Y}(t)$. Comment on the distribution of Y based on your result. [Hint $\left.\phi_{X_{k}}(t)=e^{\lambda_{k}\left(e^{i t}-1\right)}\right]$.

QUESTION 5 [20 marks]

5.1. Suppose that X and Y are independent, continuous random variables with densities $f_{X}(x)$ and $f_{Y}(y)$. If $Z=X+Y$, then show that the density function of Z is

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y \tag{5}
\end{equation*}
$$

5.2. Let X and Y be independent Poisson random variables with parameters λ_{1} and λ_{2}. Use the convolution formula to show that $X+Y$ is a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$.
5.3. Let X_{1} and X_{2} have joint p.d.f. $f\left(x_{1}, x_{2}\right)=2 e^{-\left(x_{1}+x_{2}\right)}$ for $0<x_{1}<x_{2}<1$. Let $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$. Find the joint p.d.f. of Y_{1} and $Y_{2}, g\left(y_{1}, y_{2}\right)$.

=== END OF PAPER===

TOTAL MARKS: 100

